
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 349
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Mutation Testing:An Oversight of Equivalent Mutant Problem
Rupinder Kaur

Research Scholar, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra,
Haryana

Email: kaur.rupinder036@gmail.com
Sanjay Tyagi

Assistant Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra,
Haryana

Email: tyagikuk@yahoo.com

Abstract
Mutation testing is an approach which will help to find software errors. Mutation testing creates
different versions of a program by making small syntactic changes,known as mutants of
program.However, the mutants functionally identical tomainversion,are well-known as
equivalent mutants.The topic of equivalent mutants is one of major problem of mutation testing
as they remain undetected in program by any test suite. Traditionally, equivalent mutants were
detectedmanually,thus making testing more time consuming and difficult. Nowadays, various
algorithms,mutation operators and tools are implemented to achieve a solution to the
equivalence problem to some extent.Butautomatic detection of alltheequivalent mutant is still a
problem.This paper gives an overview of various types of equivalent mutants,methods to
overcome this problem and oversight of tools and algorithms to detect such mutants.
Keywords-equivalent mutant, mutation, mutation operator, mutation testing,fault detecting technique.

1. Introduction

Mutation testingisan error revealing approach
for software testing[1][2]. Mutation testing
induces errors into the program and generates
mutant of the program. The technique thus
givesa test case adequacy criteria and helps in
the revelation of errors in programs. Amutant
is believed to be dead, when a test input finds
difference between erroneous and the original
program.If no test suite can reveal the
variation between original and mutant
program,then mutant is still live. Live mutants
can be of two types, one which can be killed
by improving test data and another which are
identical to original program.Live
mutants,functionallyequal to original program,
are called equivalent mutants.These equivalent
mutants remain undetected during testing and
is a major problem in mutation testing.The
equivalence detection is an undecideable
process. Mutation testing measures
effectiveness of a test data by providing a
mutation score(MS).

𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀

MC= total mutants created,
MD = deadmutants,
ME = number of equivalent mutants.

Undetected identical mutants,will never lead
to 100%mutation score.Thus,the tester will not
have full faith on test data and remains
wondered if the live mutants are equal or the
test suites are inadequate to expose errors.
Detection of equivalent mutants manually is
quite expensive and time consuming and thus
making mutation testing expensive too.
Fig.1 shows the program and its mutant. The
statement 4 in original program is changed to
formmutantm. Mutant m and original program
is equivalent as mi and ghave same
value,resulting in same output.

Program mutant (m)

int fun fmin(g,h) int fun fmin(g,h)
intg,h intg,h
mi=g mi=g
if(h<g) if(h<mi)
mi=h mi=h
return(mi) return(mi)

Figure 1.Example ofequivalent mutant

2. Types of equivalent mutants

There are threekinds of equivalent mutants[3]:
1. Expression equivalent mutant
2. Pre-condition equivalent mutant
3. Weak equivalent mutant

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 350
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

2.1Expression equivalent mutant

In Fig.2,the statement 5 is changed in original
program to formmutantm1.It is easy to
examine the equivalence in m1 and original
program because the program’s state after or
beforethe execution of mutated statement is
need not to be taken into account.The
comparison of value of M in mutant and
original program is only need to consider to
findequivalence in this case. These kindsof
equivalent mutants are expression equivalent
mutants.

Original program mutant(m1)

Real fun G(L,M) Real fun G(L,M)
Real(L,P) Real(L,P)
 Integer M,J Integer M,J
 P=L P=L
IF(M.LT.1) THEN IF(M.LT.0.5) THEN
 M=1 M=1
ENDIF ENDIF
RETURN(M) RETURN(M)

Figure 2.Expression equivalent mutant

2.2Precondition equivalent mutant

In Fig.3, m2is mutant of original program.The
detection of equivalenceof m2with the original
program needs to observe the state of program
beforetheexecution of mutated statement. The
precondition need to be satisfied is that C
cannot be less than 1. Hence, the
mutantsareprecondition equivalent mutant.

2.3 Weak equivalent mutant

An another kind of mutant is m3, shown in
Fig.4. Negative value of L leads to difference
in P’s value in mutant from original program
which causes difference in state in the original
and mutant program. Investigation of equality
for this kind of mutant requires running the
program beyond the fault statement and
finding whether the variation in state goes to
exit point. These kinds of mutants are weak
equivalent mutants.

Original program mutant(m2)

Real funG(A,C) Real fun G(A,C)
 Real A,B Real A,Y
 Integer C,I Integer C,I
 B=A B=A
DO LB J=1,C DO LB J=1,ABS(C)
 B=B*B B=B*B
LB IF(B.GT.0.5) LB IF(B.GT.0.5)
 Q=TRUE Q=TRUE
 ELSE ELSE
 Q=FALSE Q=FALSE
END END

Figure 3.Precondition equivalent mutant

Original program mutant(m3)

Real fun G(L,M) Real fun G(L,M)
 Real L,P Real L,P
 Integer M,J Integer M,J
 P=L P=NEG(L)
DO L1 J=1,M DO L1J=1,M
 P=P*P P=P*P
IF(P.GE.1) IF(P.GE.1)
 Q=L+P Q=L+P
ELSE ELSE
 Q=L-P Q=L-P
END END

Figure 4.Weak equivalent mutant

3.Approaches to overcome Equivalent
Mutant Problem (EMP)

There are three broad categories in which
approaches to overcome EMP are
distributed[4].
1. Detecting equivalent mutant techniques
2. Avoiding equivalent mutant generation
techniques
3. Suggesting equivalent mutants techniques

3.1 Detecting equivalent mutant techniques

Following techniques can only detect
equivalent mutants:
 Compiler optimization techniques [5]
 Mathematical rules [6]
 Program slicing [7]
 Margrave’s change-impact analysis

[8]
 Lesarmodel-checker [9]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 351
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3.2 Avoiding equivalent mutant generation
techniques

Following are the techniques to avoid
generation of equivalent mutant.

 Selective mutation [3]
 Program dependence and mutation

analysis relationship [10]
 Co-evolutionarytechniques with

selective mutation [11]
 Isolation of 1st order equivalent

mutants using 2nd order mutation
[12]

 Higher order mutation testing [13]

3.3 Suggesting equivalent mutants techniques

Followingare the suggestion techniques for
equivalent mutants:
 Equivalent mutant’s impact on

coverage [14]
 Changes in coverage to recognize

equivalent mutants [15]

4.Literature Review

Previous approaches for automatically
detecting equivalent mutants were discovered
and new algorithms had been presented to
automatically reveal equivalent mutants under
specified conditions[5]. Some of equivalent
mutants could be foundby using data flow and
compiler optimizationtechniques.The
algorithm designed had been used to build a
tool called Equalizer and embed this tool into
Mothra testing system to detect equivalent
mutants.Although all equivalent mutants were
not possible to detect but still Equalizer was
able to detect equivalent mutants to some
extent in several programs,almost half in some
cases.As this problem was handled manually
before,so this tool is a partial solution to
equivalent mutant problem. The results from
this paper can be useful to tester and helps to
make mutation testing more useful on practical
basis.

A technique using mathematical
constraints[6]was presented to identify
equivalent mutants and infeasible paths
automatically. Specific algorithms proposed
became a good partial solution to equivalent
mutant problem.The results were even better

when the technique was exercised to the
feasible path problem. Equivalencer,a tool was
able to find approximately 45%of equivalent
mutants.Apowerful automated test
environment was provided to produce highly
assured software at affordable cost.The system
would allow a user to provide some input and
helped to find errors on basis of input-output
pairs.

Program slicing [7]reduced the efforts in
determining equivalent mutants as most of
time and cost is associated with manual
handling of mutants that are equal or hard to
reveal error.Program simplification process
simplified the program where the mutant was
not equivalent andhelped to kill that mutant.
To reduce equivalent mutants, Program slicing
could also be used with firm and strong
mutation.The mutants were sliced for
correlatingthe influence of main and mutant
code on specificoperands.Amorphous slicing
was used and compared with conventional
slicing.Smaller slices are produced by
amorphous slicing than conventional slicing.

A fitness function[8]was designed to detect
equivalent mutants.Also it was shown,how to
choose effective test cases and mutants of
original program.The method proposed did not
refuse selective mutation or reduced number
of mutants.Ingiventechnique,afterapplying all
mutation operators,a pool of mutants was
produced from original program.A GA
evolved subsets of mutant and insignificant or
low performance mutants were
rejected.Similarly, a GA was suggested for
test data to increase testing capabilitywith
adequacy score.At the end, the two methods
were integratedfor evolvement of mutants and
test data parallely.

Previous work considered cost benefits of
selective mutation whereas [3] considered
detecting equivalent mutant’s cost. The cost
was measured by considering equivalent
mutants and statements in program. Finding
most efficient operator,operators were
compared by using score and cost.The
comparison of score and cost of efficient
operators were made with another set of
operators and selective mutation.x%selective
mutation was more efficient than selective
mutation depending uponexpression and {abs,
aor, san, sdl, uoi } group of operators, when a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 352
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

mutation score near to 100% was needed.
Also, selective mutation depending upon
strictgroup of effective operators(aor, san, sdl,
ror, uoi) was efficient when less stringent test
coverage was required.

To find equivalent and partially equivalent
mutants, nine problematic patterns were
introduced[9]. Specific conditions between
definitions and uses of variables were
introduced for each pattern. For data flow
analysis, single static assignment was utilized.
70% of equivalent mutants were revealed by
using this technique.

I-EQM method was able to isolate equivalent
mutants [10]. Given first order mutants were
classified as alive or killed by utilizing second
order mutants. The obtained results revealed
that 82% of killable mutants were classified
correctly with 71% precision.

Mutation impact coverage was used to
separate equivalent mutant from non-
equivalent mutants. The implementation and
deployment of technique was easy. Schuler
etal.claimed that if a mutation changes
coverage, 75% chance of its being non-
equivalent[11].

5.Conclusion

This paper discussesmutation testing and the
problems in mutation testing.Main emphasis is
on equivalent mutant,which is a major
problem in mutation testing.Various types of
equivalent mutants are also discussed.Methods
to overcome equivalent mutants are described
in order to detect and avoid equivalent
mutants.Algorithms and tools have also been
discussed to overcome the equivalent mutant
problem.There is still a lot of work to be done
in this field.Various partial solutions were
developed. Still work is going on to find a
complete solution to equivalent mutant
problem.The solutions given in literature
review will help in future to make mutation
testing more widely use in practice.

References

[1] R. A. Demillo, R. J. Lipton, and F. G.
Sayward, "Hints on test data
selection:Help for the practicing
programmer," IEEE Computer, pp. 34-41,
1978.

[2] R. G. Hamlet, "Testing programs with the
aid of a compiler," IEEE Transactions on
Software Engineering, pp. 279-290, 1977.

[3] Elfurjani S. Mresa and Leonardo Bottaci,
"Efficiency of mutation operators and
selective mutation strategies:An empirical
study," Software Testing,Verification and
Reliability, pp. 205-232, December,1999.

[4] Lech Madeyski, Wojciech Orzeszyna,
Richard Torkar, and Mariusz Jozala,
"Overcoming the Equivalent Mutant
Problem:A Systematic Literature Review
and a Comparative Experiment of Second
Order Mutation," IEEE TRANSACTIONS
on SOFTWARE ENGINEERING, 2013.

[5] A. Jefferson Offut and W. Michael Craft,
"Using Compiler Optimaztion Techniques
to Detect Equivalent Mutants," Software
Testing,Verification and Reliability, pp.
131-154, 1994.

[6] A. Jefferson Offut and JIE PAN,
"Automatically Detecting Equivalent
Mutants and Infeasible Paths," Software
Testing,Verification and Realiability, pp.
165-192, 1997.

[7] Rob Hierons, Mark Harman, and
Sebastian Danicic, "Using Program
Slicing to Assist in the Detection of
Equivalent Mutants," Software
Testing,Verification and Reliability, pp.
233-262, 1999.

[8] Evan Martin and Tao Xie, "A Fault
Model and MutationTtesting of Access
Control Policies," in 16th International
Conference World Wide Web, 2007.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 353
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[9] Lydie du Bousquet and Michel Delaunay,
"Mutation analysis for Lustre programs,"
IEEE, 2007.

[10] Mark Harman, Rob Hierons, and
Sebastian Danicic, "The Relationship
between Program Dependence and
Mutation Analysis," in Mutation testing
for the new century.: Kluwer Academic
Publishers.

[11] Konstantinos Adamopoulos, Mark
Harman, and Robert M. Hierons, "How to
Overcome the Equivalent Mutant
Problem and Achieve Tailored Selective
Mutation Using Co-evolution," in
GECCO, Heidelberg, 2004, pp. 1338-
1349.

[12] Marinos Kintis, Mike Papadakis, and
Nicos Malevris, "Isolating first order
equivalent mutants via second order
mutation," in IEEE Fifth International
Conference on Software
Testing,Verification and Validation,
2012, pp. 701-710.

[13] Yue Jia and Mark Harman, "High Order
Mutation Testing,".

[14] Bernhard J.M. Grun, David Schuler, and
Andreas Zeller, "The impact of equivalent
mutants," in IEEE International
Conference on Software Testing
Verification and Validation Workshops,
2009.

[15] David Schuler and Andreas Zeller, "(Un-
)Covering Equivalent Mutants," in IEEE
Third international conference on
software testing,verification,and
validation, washington,USA, 2010, pp.
45-54.

[16] Marinos Kintis and Nicos Malevris,
"using data flow patterns for equivalent
mutant detection," in IEEE International
Conference on Software
Testing,Verification,Validation , 2014.

IJSER

http://www.ijser.org/

